
Heterogeneous Embedding Propagation for
Large-scale E-Commerce User Alignment

Vincent W. Zheng†, Mo Sha‡, Yuchen Li�, Hongxia Yang�,

Yuan Fang�, Zhenjie Zhang†, Kian-Lee Tan‡, Kevin Chen-Chuan Chang∗

† Advanced Digital Sciences Center, Singapore {vincent.zheng,zhenjie}@adsc.com.sg
‡ National University of Singapore, Singpaore {sham,tankl}@comp.nus.edu.sg
� Singapore Management University, Singapore {yuchenli,yfang}@smu.edu.sg
� Alibaba Group, China yang.yhx@alibaba-inc.com
∗ University of Illinois at Urbana-Champaign, USA kcchang@illinois.edu

Abstract—We study the important problem of user alignment
in e-commerce: to predict whether two online user identities
that access an e-commerce site from different devices belong to
one real-world person. As input, we have a set of user activity
logs from Taobao and some labeled user identity linkages. User
activity logs can be modeled using a heterogeneous interaction
graph (HIG), and subsequently the user alignment task can
be formulated as a semi-supervised HIG embedding problem.
HIG embedding is challenging for two reasons: its heterogeneous
nature and the presence of edge features. To address the
challenges, we propose a novel Heterogeneous Embedding Prop-
agation (HEP) model. The core idea is to iteratively reconstruct a
node’s embedding from its heterogeneous neighbors in a weighted
manner, and meanwhile propagate its embedding updates from
reconstruction loss and/or classification loss to its neighbors.
We conduct extensive experiments on large-scale datasets from
Taobao, demonstrating that HEP significantly outperforms state-
of-the-art baselines often by more than 10% in F-scores.

Index Terms—E-commerce User Alignment, Heterogeneous
Interaction Graph, Heterogeneous Embedding Propagation

I. INTRODUCTION

E-commerce user alignment is the task of linking different

user identities on an e-commerce site if they belong to one

real-world person. A typical scenario faced by Taobao, a

leading e-commerce site, is that online users can access Taobao

through different devices (e.g., mobile or PC), and they may

not log into their accounts. Being able to link these devices to

the real-world Taobao user is of great importance: it not only

helps the company profile its customers more accurately, but

also offers users a seamless shopping experience.

In this paper, we focus on predicting whether a Mobile

device ID (MID) and a PC device ID (PID) refer to the same

Taobao user. As input, we have user activity logs from Taobao.

An example of such logs is shown in Table I. Each row is an

activity record about which device a user used, which IP she

had, which shop she visited, which auction she browsed, and

This material is based upon work partially supported by National Research
Foundation, Prime Minister’s Office, Singapore under its Campus for Re-
search Excellence and Technological Enterprise (CREATE) programme, and
Alibaba Group under its Alibaba Innovative Research (AIR) programme. Any
opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the views
of the funding agencies.

TABLE I
EXAMPLES OF E-COMMERCE USER ACTIVITY LOGS.

Time User ID IP Keyword Auction Shop
04/05/2017 16:21:41 PID1 IP2 Keyword1 - Shop3
05/05/2017 22:16:00 MID3 IP2 Keyword2 Auction1 Shop2

...

which keywords she searched. Some fields are empty, since

an activity may not involve all actions. As output, we predict

a binary label for a candidate pair of PID and MID, indicating

whether they belong to the same Taobao user.

Data model. We choose to model the user activity logs as a

Heterogeneous Interaction Graph (HIG). Next, we define what

an HIG is and explain our motivation.

In our Taobao user alignment task, an HIG is a heteroge-

neous graph, whose network schema is defined in Fig. 1. Each

node refers to an entity in the user activity logs, such as an

MID, a PID, an IP, a keyword, an auction or a shop. MID and

PID are about users, whereas the other entities are about items.

Hence in this paper, we call a PID or an MID as a user ID,

whereas we call an IP, a keyword, an auction or a shop as an

item ID. Each edge indicates interactions between two nodes,

and we extract a time-aware feature vector to describe such

interactions. Particularly, a user-item edge (e.g., PID-shop)

indicates how a user browses an item, and its feature vector

describes when and how frequently such browsing happens.

An item-item edge (e.g., IP-shop) indicates how two items co-

occur in the user activity logs, and its feature vector describes

when and how frequently such co-occurrence happens. HIG

is a generalization to a recent concept of “bipartite interaction

graph” [1], which was proposed to model time-dependent

interactions between two types of entities (e.g., investors and

stocks). HIG has a unique advantage as our data model—its

relational structure is suitable for discovering rich semantics

of each user and item.

We find that, although there are some alternative data

models, they are not as effective as HIG for our user alignment

task. For example, we can represent each user ID with a

feature vector about when and how frequently she browses

1434

2018 IEEE International Conference on Data Mining

978-1-5386-9159-5/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDM.2018.00198

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 01,2020 at 09:37:51 UTC from IEEE Xplore. Restrictions apply.

IP Auction Shop Key-
word

PID MID

K
w

A

PID

Shop AuctionAAAShopIP uc oShop

User ID

Item ID features

Fig. 1. Schema of HIG.

v

Auction IP

Shop Keyword

PID
x

Auction IP

Shop Keyword

MID
features reconstruct

from
neighbors

propagate
to

neighbors classification

Fig. 2. Overall framework of HEP.

each item, and uses these feature vectors for classification,

but this approach leaves out the item interactions. We can

also model the item co-occurrence by topic modeling [2], and

represent each user ID by her interactions with each item

group, but this approach is hard to factor in time information.

Finally, we can also model each user as a time series of user-

item interactions, and use a recurrent neural network [3] to

learn a low-dimensional representation for classification, but

this approach still does not fully exploit the user relations as

each user’s sequence is treated as independent.

Challenges. To leverage the relational structure of HIG, we

formulate our user alignment task as a semi-supervised HIG
embedding problem. We face two challenges below to embed

HIG in e-commerce user alignment.

• Node heterogeneity. We cannot simply treat the nodes in HIG

as homogeneous, as a user clearly has different semantics from

an item. Typical graph embedding methods [4], [5] focus on

homogeneous graphs.

• Edge features. Despite the success of recent heterogeneous

graph embedding methods, such as Metapath2vec [6] and HNE

[7], they do not consider edges with features.

Technical model. To address the above challenges, we propose

a novel Heterogeneous Embedding Propagation (HEP) model.

As shown in Fig. 2, the core idea is to iteratively “reconstruct”

a node’s embedding from its heterogeneous neighbors, and

“propagate” its embedding updates to its neighbors. To han-

dle node heterogeneity, HEP treats nodes of different types

severally. For example, to learn embedding of a PID node

v in Fig. 2, HEP first aggregates v’s neighbors of each type

(e.g., all its IP neighbors), before transforming the aggregation

of each node type to reconstruct v’s embedding. To leverage

edge features, HEP considers each node v as receiving dif-

ferent contributions from its neighbors. When aggregating v’s

neighbors of the same type, HEP assigns different weights to

different neighbors according to their edge features.

Contributions. First, we study a real-world e-commerce user

alignment task, and formulate it as a semi-supervised HIG

embedding problem. Second, we propose a novel HEP model,

which addresses the challenges of node heterogeneity and edge

features. Third, we evaluate HEP on two large-scale datasets

from Taobao, and the results are promising.

II. RELATED WORK

The user alignment is related to several concepts, including

network alignment [8], network anchoring [9], and link predic-

tion [10]. Network alignment aims to align nodes across mul-

tiple homonegenous networks, such as to link user accounts in

two social networks, whereas user alignment on HIG focuses

on one network. Network anchoring aims to align nodes across

multiple heterogeneous networks, such as to link user accounts

from a check-in network (e.g., Foursquare) to an online social

network (e.g., Twitter) where each network contains hetero-

geneous nodes such as users, locations and texts. In other

words, network anchoring also focuses on multiple networks,

thus not applicable to our task either. Finally, Link prediction
aims to connect two nodes in one network. The state-of-

the-art methods employ graph embedding [11], [10], which

learns low-dimensional node representations from the network

topology and/or content. In general, our user alignment task

can be seen as link prediction on a HIG. Next, we shall review

the state of the art in graph embedding.

Graph embedding has been a popular graph analytics ap-

proach. Early methods were mainly designed to reduce the

dimensionality of non-relational data by projecting them into

a low-dimensional manifold, as summarized in a recent survey

[12]. Recent graph embedding methods use neural networks,

with either shallow [13], [4] or deep architectures [14], [15],

[7]. DeepWalk [11] and Node2vec [4] try to preserve the first-

order graph proximity for node embedding. LINE [16] and

SDNE [15] preserve both first and second-order proximity.

Compared with the above methods, which focus on homoge-

neous graphs, our HEP considers a heterogeneous graph.

On heterogeneous graphs, metapath2vec [6] uses predefined

meta-path patterns to sample paths, and HNE [7] uses separate

deep neural networks to learn embedding for each type of

nodes before aggregating them. In contrast, HEP does not

require sampling, and considers additional edge features to

differentiate heterogeneous edges.

III. PROBLEM FORMULATION

We first introduce our terminologies and notations, as sum-

marized in Table II.

Definition 1: A heterogeneous interaction graph (HIG)

is G = (V,E,C, φ, F), where V is a set of nodes, E is

a set of edges, C = {c1, ..., cn1
} is a set of distinct node

types, φ : V → C is a node type function, F is a set of

1435

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 01,2020 at 09:37:51 UTC from IEEE Xplore. Restrictions apply.

TABLE II
LIST OF COMMONLY USED NOTATIONS.

Notation Description
G, V,E Graph G, nodes V , edges E
C, φ Node types C, node typing function φ : V → C
C′, φ Edge types C, edge typing function ψ : V × V → C′

F, f Edge feature set F , an edge’s feature vector f(v, u) ∈ R
d

D,m Set of training tuples D, with cardinality of m
n1, n2 Number of node types n1 and number of edge types n2

d, k Edge feature dimension d and node embedding dimension k
α, β Trade-off parameters for loss and regularizer
γ Slack parameter
ζ Number of negative samples

d-dimensional edge feature vectors, each of which describes

interaction between two nodes.

For example, in Fig. 1, we have C = {PID, MID, IP, shop,

auction, keyword}. We call PID and MID as user ID’s. We call

IP, shop, auction and keyword as item ID’s. For a node v ∈ V ,

φ(v) returns v’s node type from C. For an edge (v, u) ∈ E,

f(v, u) ∈ F returns a d-dimensional vector about the time-

dependent interaction features between v and u. For example,

if v is a PID and u is an IP, f(v, u) is a vector describing how

many days user v accesses IP u, how many times v accesses u
at hours of a day, days of a week, and weekday-vs.-weekend.

Similar time-dependent interaction features are extracted for

other types of edges. Finally, due to node heterogeneity, the

edges are heterogeneous too. For easier discussion later, we

denote ψ(v, u) : V × V → C × C as an edge type function.

In this paper, we let ψ(v, u) = ψ(u, v), and denote the set of

distinct edge types as C ′ = {c′1, ..., c′n2
}. In Fig. 1, we have

C ′ = {PID-IP, PID-shop, PID-auction, PID-keyword, MID-IP,

MID-shop, . . .}.
Problem inputs and outputs. As input of our problem, we

have a heterogeneous interaction graph G, and a set of training

tuples D = {(vi, ui, yi)|i = 1, ...,m, φ(vi) = PID, φ(ui) =
MID, yi ∈ {1,−1}}. As output of our problem, we wish to

learn an embedding vector hv ∈ R
k for each PID v and an

embedding vector hu ∈ R
k for each MID u. Then, given a

pair of (v, u), we can predict the probability of having a link

between v and u as

P (yi|vi, ui) = σ
(
yi · hT

vi
Whui

)
, (1)

where σ(z) = 1
1+e−z is a sigmoid function. Besides, W ∈

R
k×k is a parameter matrix to enforce the bilinear interactions

between hv and hu.

Given training data D, we aim to optimize the classification

loss by minimizing the negative log-likelihood:

L1 = − 1
m

∑m
i=1 logP (yi|vi, ui). (2)

IV. HEP MODEL

The core idea of HEP is to iteratively “reconstruct” a node’s

embedding from its heterogeneous neighbors, and “propagate”

its embedding update to the neighbors for their own embed-

ding reconstruction later. We use Fig. 2 to illustrate embedding

learning for a user ID node v.

Node heterogeneity. In HIG, a user ID (PID or MID) node

v is connected with heterogeneous neighbors, whose types

can be IP, auction, shop or keyword. We aim to use these

neighbors to reconstruct v’s embedding. Different types of

neighbors indicate different types of interactions; e.g., an edge

between v and one IP indicates how v used this IP, whereas

another edge between v and one keyword indicates how v
searched that keyword. Due to such different semantics, these

different types of edges are not directly comparable. Therefore,

to use v’s neighbors to reconstruct v’s embedding, we have to

differentiate the neighbor types. As shown in Fig. 2, HEP tries

to aggregate the embedding from each type of neighbors sep-

arately (e.g., all the IP neighbors together, and all the keyword

neighbors together, etc), and then concatenate the outputs from

each neighbor type to reconstruct v’s embedding. Before we

proceed with the reconstruction, there is one more question

of how much each neighbor contributes to the reconstruction,

which can be addressed by edge features.

Edge features. To quantify how much contribution each

neighbor u makes in reconstructing v’s embedding, we use

the edge features f(v, u) ∈ R
d to compute an edge weight.

As neighbor nodes are heterogeneous, we differentiate the

edge types. For each edge type c′ ∈ C ′, we introduce two

parameters λc′ ∈ R
d and b′c′ ∈ R to compute the weight for

each edge with type c′. Formally, for an edge (v, u), whose

type is ψ(v, u), its edge weight is defined as

sv,u = σ
(
λψ(v,u) · f(v, u) + b′ψ(v,u)

)
. (3)

Due to node heterogeneity, sv,u is only comparable to sv,u′

if φ(u) = φ(u′). That is, all the edges of the same type share

the same parameters (λc′ , b
′
c′).

Reconstruction. We now use v’s neighbors and their edge

weights sv,u’s, to reconstruct v’s embedding. Denote Nv as

v’s neighbors, and N
(c)
v ⊂ Nv as v’s type-c neighbors; e.g.,

in Fig. 2, if c = IP, N
(c)
v is the set of IP neighbors of v. For

each type c, We first aggregate v’s type-c’s neighbors by a

weighted average with sv,u’s:

g̃(c)
v =

∑
u∈N

(c)
v

sv,u∑

u∈N
(c)
v

sv,u
hu. (4)

Given different neighbor types, we concatenate all g̃
(c)
v ’s:

g̃v = CONCAT

(
g̃(c1)
v , ..., g̃

(cn1
)

v

)
. (5)

Finally, we use g̃v to reconstruct v’s embedding h̃v . To

account for node heterogeneity, we introduce two type spe-

cific parameters W ′
φ(v) ∈ R

k×kn1 and b′′
φ(v) ∈ R

k for the

reconstruction. For each v ∈ V ,

h̃v = σ
(
W ′

φ(v)g̃v + b′′
φ(v)

)
. (6)

Reconstruction loss. Denote π(h̃v,hv) as the distance be-

tween the reconstructed embedding h̃v and the target em-

1436

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 01,2020 at 09:37:51 UTC from IEEE Xplore. Restrictions apply.

bedding hv . Here we adopt the Euclidean distance, although

alternatives are possible.

π(h̃v,hv) =
1

2
‖h̃v − hv‖22. (7)

Subsequently, we introduce a hinge loss such that the recon-

structed embedding h̃v is closer to hv than any other hu. That

is, ∀u �= v,

�(v, u) =
[
γ + π(h̃v,hv)− π(h̃v,hu)

]
+
, (8)

where [z]+ returns z if z > 0, and 0 otherwise. γ > 0 is a

slack parameter. To save computation from evaluating every

possible u ∈ V \v, we adopt negative sampling [4] to sample a

set of u’s. Denote DEGu as the degree of node u. We define the

negative sampling probability of a node u by Pn(u) ∝ DEG
3/4
u .

We set the number of negative samples for each node v as ζ.

Finally, we have the overall reconstruction loss as

L2 = 1
|V |

∑
v∈V

∑
u∼Pn(u)

�(v, u). (9)

V. END-TO-END TRAINING

Denote Θ = {W, b,λc′ , b
′
c′ ,W

′
c,b

′′
c |c ∈ C, c′ ∈ C ′} as the

set of parameters. Denote H = {hv|v ∈ V } as the set of node

embedding. We train Θ and H by minimizing:

L(Θ, H) = L1 + αL2 + βΩ(Θ), (10)

where α > 0 and β > 0 are trade-off parameters. Ω is a

regularizer (i.e., the sum of each parameter’s �2-norm).

To solve Eq. 10, we adopt an alternate optimization ap-

proach to learn Θ and H iteratively, as follows.

Fix Θ, we optimize H . We perform stochastic gradient

descent (SGD). For each tuple (vi, ui, yi) in L1, we have its

gradients over H as

∂L1

∂hxi

= − 1

m
[1− P (yi|vi, ui)] yiWhxi , (11)

where xi ∈ {vi, ui}. For each node v and its negative sample

u’s, we have their gradients over H as

∂L2

∂hx
=

{
(−1)δ(x=u) 1

|V |
(
h̃v − hx

)
, if �(v, u) > 0;

0, otherwise,
(12)

where x ∈ {v, u}. The indicator function δ(x = u) = 1 iff

x = u. After hv and hu are updated in one iteration, they will

be used to reconstruct the neighbors of v and u in the next

iteration, effectivly propagting the gradients of hv and hu.

Fix H , we optimize Θ. We do SGD as well. For each tuple

(vi, ui, yi) in L1, we have its gradients over Θ as

∂L1

∂W
= − 1

m
[1− P (yi|vi, ui)] yihvih

T
ui
, (13)

∂L1

∂b
= − 1

m
[1− P (yi|vi, ui)] yi. (14)

For each edge (v, x) ∈ E, we have their gradients over Θ as

∂L2

∂λψ(v,x)
=

(
∂L2

∂h̃v

)T
· ∂h̃v

∂g̃
φ(x)
v

·∂g̃
φ(x)
v

∂sv,x
·sv,x(1−sv,x)f(v, x), (15)

∂L2

∂b′ψ(v,x)

=

(
∂L2

∂h̃v

)T
· ∂h̃v

∂g̃
φ(x)
v

· ∂g̃
φ(x)
v

∂sv,x
· sv,x(1− sv,x), (16)

∂L2

∂W ′
φ(v)

=
∂L2

∂h̃v

◦ h̃v ◦
(
1− h̃v

)
· g̃T

v , (17)

∂L2

∂b′′
φ(v)

=
∂L2

∂h̃v

◦ h̃v ◦
(
1− h̃v

)
, (18)

∂L2

∂h̃v

=

{
1

|V | (hu − hv) , if �(v, u) > 0;

0, otherwise,
(19)

∂h̃v

∂g̃
φ(x)
v

= diag
(
h̃v ◦

(
1− h̃v

))
·R

(
W ′

φ(v), φ(x)
)
, (20)

∂g̃
φ(x)
v

∂sv,x
=

∑
u∈N

φ(x)
v \{x} sv,u

(
∑

u∈N
φ(x)
v

sv,u)2
hx, (21)

where “diag(z)” returns a diagonal matrix whose diagonal

entries are z, “◦” is an element-wise multiplication, and

R
(
W ′

φ(v), ci

)
returns a sub-matrix of W ′

φ(v) from row 1 to

row k and from column (i − 1)k + 1 to column ik (i.e., the

columns about type ci).
Finally, we compute gradients for Θ w.r.t. its regularizer

Ω(Θ). For typical regularizers, such as �2- or �1-norm, it is

straightforward to compute their gradients ∇ΘΩ(Θ). Hence,

we skip the details here.

Convergence. Because L1 ≥ 0, L2 ≥ 0 and Ω ≥ 0, we

have L(Θ, H) ≥ 0. We start with initializing Θ and H , and

continuously minimize L(Θ, H). Since L(Θ, H) is bounded,

we reach convergence eventually.

VI. EXPERIMENTS

In this section, we study the empirical performance of HEP

on the real-world Taobao datasets.

A. Datasets and Settings

Dataset generation. We prepared two datasets, from one

week’s user activity logs from Taobao in a city of China. We

processed these logs in a format as Table I shows. Each record

of the logs shows whether it comes from a mobile device (i.e.,
MID) or a PC device (i.e., PID). We then used Taobao accounts

to annotate these records. That is, for each MID or PID, if

we observed any Taobao account login , we associated all its

activity log records with that Taobao account. Generally, it is

possible that one MID/PID is associated with multiple Taobao

accounts, if several real world persons logged into Taobao on

the same device (e.g., on public computers). In this study, we

only kept those devices (and their activity records) which are

associated with one Taobao account. Furthermore, we removed

the activity records that are not annotated with any Taobao

account as well as those associated with only PID or MID.

1437

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 01,2020 at 09:37:51 UTC from IEEE Xplore. Restrictions apply.

TABLE III
DATASETS AND LABEL STATISTICS.

#record #PID #MID #IP #shop #auction #keyword #pos #neg

TB-Top 73,394K 204K 53K 277K 1,125K 3,718K 1,317K 147K 10,611K

TB-Rnd 31,202K 99K 46K 167K 495K 1,082K 437K 57K 2,363K

Finally, to ensure data quality, we removed the activity records

whose PID or MID are “abnormal” (e.g., per day occurrence in

the log exceeds one million, etc.). After filtering, we obtained

an annotated subset of the original user activity log. In this

subset, each record is annotated with one Taobao account, so

does each PID or MID. We denote the set of distinct Taobao

accounts as U , and the set of annotated records as X . We used

U and X to prepare two datasets for experiments as follows,

which are summarized in Table III.

• TB-Top: We selected top 10% “active” Taobao accounts

from U (totaling 45K accounts), and used their corresponding

records from X as our first dataset. Activeness is defined by

the account’s number of associated activity records.

• TB-Rnd: We randomly sampled 10% accounts from U , and

used their records from X as our second dataset.

Labels. For both TB-Top and TB-Rnd, we prepared tuples

D = {(vi, ui, yi)}, where vi is a PID, ui is an MID, and yi ∈
{+1,−1}, as labels for training and evaluation. Specifically,

for each dataset, we employed a set of practical rules that are

currently used in production at Taobao: each PID and MID in

a candidate pair must co-occur with the same IP(s), the same

router(s), etc. We label a candidate pair as +1 iff both the PID

and MID are associated with the same Taobao account. We

summarize the label statistics in Table III.

We randomly split about 50% of the tuples in D for training,

25% for validation and the remaining 25% for testing. We

repeated the split for five times, and reported the average

results of these data splits for each method.

B. Performance Comparison

Baselines for data model. We first design baselines to validate

the choice of HIG as the data model for the user activity log.

• FEM: Feature Engineering Method represents each user ID

with four feature vectors, each of which describes when and

how frequently the user browsed each item ID of a particular

type (i.e., IP, shop, auction and keyword). As the resulting

feature vectors are very high dimensional and sparse, we

further hashed1 each feature vector into 128 dimensions. After

that, to feed the four feature vectors of a PID and those of an

MID to a classifier, we chose2 to compute the cosine similarity

between each feature vector for PID and the corresponding one

for MID. In the end, we obtained a 4-dimensional vector for

binary classification with logistic regression.

1https://en.wikipedia.org/wiki/MurmurHash
2We also tested other strategies, such as feature concatenation or feature

differences between PID and MID, but their performances were not as good.

• LDA: Latent Dirichlet Allocation [2] sees each user ID

as a “document”, and its co-occurred item IDs as “words”.

For each type of items, we learned a 128-dimensional topic

distribution vector for each user ID by LDA. We performed

the final classification similar to FEM.

• GRU: Gated Recurrent Unit [3] is a recurrent neural network,

and it is used to model the sequence of user activity logs

for each user ID. To avoid having over-lengthy sequences for

each user ID, we discretized time into half-day slots. In each

time slot, we used FEM to similarly obtain a 128-dimensional

feature vector for each type of item ID, and then concatenated

them as inputs for GRU. We fed the last hidden output of a

PID’s GRU and that of an MID’s GRU with a classifier, as

defined in Eq. 2, for end-to-end training.

Baselines for technical model. We compare to state-of-the-art

baselines to validate the use of HEP as the technical model

for addressing node heterogeneity and edge features.

•Metapath2vec: we applied Metapath2vec [6] on HIG. Specif-

ically, we first designed a set of meta-path patterns, including

“user-item-user”, “user-item-item-user” and “user-item-user-

item-user”, where “user” can be PID or MID, “item” can be

IP, shop, auction or keyword. Then, we sampled path instances

from HIG for these meta-path patterns, and fed them into

Metapath2vec to learn a 128-dimensional embedding for each

user ID. Finally, we trained a classifier, as defined in Eq. 2,

based on these user ID embedding.

• EP: we adapted Embedding Propagation [17] on HIG as

well. Specifically, we reconstructed each node’s embedding

by mean pooling of all its neighbors’ embedding without

differentiating node heterogeneity or edge weight. As EP is

unsupervised, we trained a separate classifier on the learnt

user ID embedding, as defined in Eq. 2.

• HEP-: we designed a weaker variant of HEP, where edge

features are ignored and all edge weights are treated as one.

Hyperparameter settings. We tuned the hyperparameters for

all the methods. For logistic regression used in FEM and LDA,

we used �2 regularization with weight 1.0. For LDA, we used

Google’s implementation3, and set its α = 0.4, β
= 0.01

and number of burn-in iterations to 150. For GRU, we used

the TensorFlow implementation. For Metapath2vec, we set the

sampled path length as 20, number of paths per node as 20,

context window size as 2 and number of negative samples as

64. For EP, we also adopted a similar negative sampling design

as HEP (Eq. 9) to evaluate its reconstruction loss. We set the

hinge loss slack γ = 0.1 and number of negative samples as

ζ = 5. For both HEP- and HEP, we set d = 34,
k = 128,

α = 0.1, β = 0.1, γ = 0.1 and ζ = 5.

Results and analysis. We report the results of our methods

HEP and HEP-, as well as the baselines, in Table IV. Overall,

HEP outperforms all competitors in F1 scores. Next, we

discuss why each method works or fails in our task.

3https://github.com/openbigdatagroup/plda

1438

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 01,2020 at 09:37:51 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
COMPARISON WITH BASELINES.

TB-Top TB-Rnd
Precision Recall F1 Precision Recall F1

FEM 60.3 3.4 6.4 68.7 1.9 3.7
LDA [2] 70.4 10.6 18.5 68.3 6.1 11.3
GRU [3] 51.8 26.2 34.8 52.6 22.1 31.2

Metapath2vec [6] 1.7 62.9 3.4 2.3 58.7 4.4
EP [17] 34.3 6.7 11.2 35.0 6.1 10.4

HEP- (our variant) 32.9 31.3 32.1 34.7 25.0 29.0
HEP (our model) 36.5 39.2 37.8 44.5 40.5 42.4

1) Validation of Data Model:

• FEM achieves high precision, but has very low recall on

both datasets, as shown in Table IV. This coincides with

our intuitions, as discussed in Sect. I. On the one hand,

FEM’s features are rich to describe the interactions between

users and items, leading to high precision. On the other hand,

FEM overlooks items with similar semantics (e.g., a keyword

“shoes” and an auction about Nike), resulting in low recall.

• LDA improves recall over FEM without compromising

precision. The reason is LDA benefits from item co-occurrence

through topic modeling. With a better understanding of the

item semantics (i.e., similar items are grouped into “topics”),

LDA is able to represent each user ID with a more compact

feature vector about how the user interacts with different item

groups instead of individual items.

• GRU achieves much higher recall than FEM and LDA.

The improvement on recall is credited to learning meaningful

representations from its input FEM features through neural

network. Overall, GRU still has a limitation of not fully

exploiting the relations among users and items as GRU treats

each user’s sequence as independent.

• HEP is better than the above in terms of recall and F1,

because it can fully exploit the HIG’s relational structure to

learn both item-item relations and user-item relations. Besides,

HEP is able to explicitly consider the time information en-

coded in the edge features. On the contrary, GRU only models

each user’s activity as sequences, losing valuable temporal

information (e.g., time of day and day of week).

2) Validation of Technical Model:

• Metapath2vec achieves very low precision and high recall.

The high recall is credited to exploiting the relations among

users. In particular, we used meta-path patterns to guide the

path sampling. These meta-path patterns tend to relate user

ID’s who browse a similar set of items.

• EP achieves relatively high precision but low recall. The high

precision is credited to exploiting both item-item and user-item

relations. EP also reconstructs a user ID by all its interacted

items, and propagates the embedding over the graph. Hence it

is likely to well characterize each user ID and achieve higher

precision. However, since EP overlooks node heterogeneity

and edge features, it cannot fully leverage the HIG.

• HEP- and HEP both achieve relatively high precision and

recall. HEP also outperform all the baselines in terms of

F1. Compared with Metapath2vec, our methods are free from

path sampling, which is less ideal when there are also edge

features. Besides, Metapath2vec still embed users and items

in the same space, and thus does not fully account for node

heterogeneity. Compared with EP, we are advantageous for

modeling node heterogeneity and edge features. Additionally,

HEP- and HEP are trained in an end-to-end framework,

whereas EP is unsupervised. Finally, HEP outperforms HEP-,

demonstrating the need to model edge features.

VII. CONCLUSION

In this paper, we study an important task of e-commerce

user alignment, to classify whether user identities across de-

vices are about the same real-world person. We chose to model

the user activity logs as a heterogeneous interaction graph

(HIG), and formulated the task as a semi-supervised HIG

embedding problem. To address the challenges of node hetero-

geneity and edge features, we proposed a novel heterogeneous

embedding propagation (HEP) model. Finally, experiments on

Taobao datasets showed that HEP can significantly outperform

state of the art in terms of F1 scores.

REFERENCES

[1] Y. Zhang, Y. Xiong, X. Kong, and Y. Zhu, “Learning node embeddings
in interaction graphs,” in CIKM, 2017, pp. 397–406.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
JMLR, vol. 3, pp. 993–1022, 2003.

[3] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” CoRR, vol.
abs/1412.3555, 2014.

[4] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in KDD, 2016, pp. 855–864.

[5] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, “Struc2vec: Learning
node representations from structural identity,” in KDD, 2017, pp. 385–
394.

[6] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable
representation learning for heterogeneous networks,” in KDD, 2017, pp.
135–144.

[7] S. Chang, W. Han, J. Tang, G. Qi, C. C. Aggarwal, and T. S. Huang,
“Heterogeneous network embedding via deep architectures,” in KDD,
2015, pp. 119–128.

[8] S. Zhang and H. Tong, “FINAL: fast attributed network alignment,” in
KDD, 2016, pp. 1345–1354.

[9] X. Kong, J. Zhang, and P. S. Yu, “Inferring anchor links across multiple
heterogeneous social networks,” in CIKM, 2013, pp. 179–188.

[10] M. Zhang and Y. Chen, “Weisfeiler-lehman neural machine for link
prediction,” in KDD, 2017, pp. 575–583.

[11] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in KDD, 2014, pp. 701–710.

[12] H. Cai, V. W. Zheng, and K. C. Chang, “A comprehensive survey of
graph embedding: Problems, techniques and applications,” TKDE, 2018.

[13] R. Xie, Z. Liu, J. Jia, H. Luan, and M. Sun, “Representation learning of
knowledge graphs with entity descriptions,” in AAAI, 2016, pp. 2659–
2665.

[14] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural
networks for graphs,” in ICML, 2016, pp. 2014–2023.

[15] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in
KDD, 2016, pp. 1225–1234.

[16] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-
scale information network embedding,” in WWW, 2015, pp. 1067–1077.

[17] A. Garcı́a-Durán and M. Niepert, “Learning graph representations with
embedding propagation,” in NIPS, 2017, pp. 5125–5136.

1439

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 01,2020 at 09:37:51 UTC from IEEE Xplore. Restrictions apply.

